欧美中文在线视频,天天干天天射天天插,久久视频这里只精品3国产,久久电影精品久久99久久

TDA2030功放電路圖 電動車充電器電路圖 電子電路 功放電路 電子制作 集成塊資料 電子報 pcb 變壓器 元器件知識 逆變器電路圖 電路圖 開關電源電路圖 傳感器技術 led 電磁兼容
電子電路圖
當前位置: 首頁 > 電子電路 > 設計編程

反激式開關電源的變壓器電磁兼容性設計

時間:2011-03-17 20:17:43來源:原創 作者:admin 點擊:

  反激式開關電源的變壓器電磁兼容性設計

 

    隨著功率半導體器件技術的發展,開關電源高功率體積比和高效率的特性使得其在現代軍事、工業和商業等各級別的儀器設備中得到廣泛應用,并且隨著時鐘頻率的不斷提高,設備的電磁兼容性(EMC)問題引起人們的廣泛關注。EMC設計已成為開關電源開發設計中必不可少的重要環節。本文由www.jssjbk.com整理提供,部分內容來源于網絡,如有侵犯到你的權利請與我們聯系更正。

  

    傳導電磁干擾(EMI)噪聲的抑制在產品開發初期就加以考慮。通常下,加裝電源線濾波器是抑制傳導EMI的必要措施l1l。但是,僅僅依靠電源輸入端的濾波器來抑制干擾往往會導致濾波器中元件的電感量和電容量增大。而電感量的使體積;電容量的增大受到漏電流安全標準的限制。電路中的其他部分設計恰當也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節點相位干燥繞法,這種設計方法不僅能減少電源線濾波器的體積,還能降低成本。  

1 反激式開關電源的共模傳導干擾  

    電子設備的傳導噪聲干擾指的是:設備在與供電電網連接工作時以噪聲電流的形式通過電源線傳導到公共電網環境中去的電磁干擾。傳導干擾分為共模干擾與差模干擾兩種。共模干擾電流在零線與相線上的相位相等;差模干擾電流在零線與相線上的相位相反。差模干擾對總體傳導干擾的貢獻較小,且主要集中在噪聲頻譜低頻端,較抑制;共模干擾對傳導干擾的貢獻較大,且主要處在噪聲頻譜的中頻和高頻頻段。對共模傳導干擾的抑制是電子設備傳導EMC設計中的難點,也是最主要的任務。  

    反激式開關電源的電路中存在電壓劇變的節點。和電路中其他電勢穩定的節點不同,這些節點的電壓包含高強度的高頻成分[2]。這些電壓變化十分活躍的節點稱為噪聲活躍節點。噪聲活躍節點是開關電源電路中的共模傳導干擾源,它作用于電路中的對地雜散電容就產生共模噪聲電流M 。而電路中對EMI影響較大的對地雜散電容有:功率開關管的漏極對地的寄生電容C 變壓器的主邊繞組對副邊繞組的寄生電容Cp ;變壓器的副邊回路對地的寄生電容C 變壓器主、副邊繞組對磁芯的寄生電容C。 、C 以及變壓器磁芯對地的寄生電容C? 這些寄生電容在電路中的分布如圖1。  
本文由www.jssjbk.com整理提供,部分內容來源于網絡,如有侵犯到你的權利請與我們聯系更正。

    圖l中的共模電流, 在電路中的耦合途徑主要有3條:從噪聲源—— 功率開關管的d極通過C耦合到地;從噪聲源通過c。 耦合到變壓器次級電路,再通過C 耦合到地;從變壓器的前、次級線圈通過C?C 耦合到變壓器磁芯,再通過C 耦合到地。這3種電流是構成共模噪聲電流(圖1中的黑色箭頭)的主要因素。共模電流通過電源線輸入端的地線回流,從而被LISN取樣測量得到。  

2 隔離變壓器的EMC設計  

2.1 傳統變壓器EMC設計  

    共模噪聲的耦合除了通過場效應管d極對地這條途徑外,開關管d極的噪聲電壓通過變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過次級回路對地的寄生電容耦合到地也是共模電流產生的途徑。設法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設計方法。傳統的變壓器EMC設計方法是在兩繞組間添加隔離層[3],如圖2。  

    金屬隔離層直接連接地線的設計會增大共模噪聲電流,使EMC性能變差。隔離層應該是電路中電位穩定的節點,比如將圖2中的隔離層連接到電路前級的負極一個很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線的傳導噪聲發射水平。  

2.2 節點相位平衡法  

    在電路中,噪聲電壓活躍節點并不是單一的。以本文分析的電路為例:除功率開關管的d極外,變壓器前級繞組的另一端U 也是一個噪聲電壓活躍節點,而且節點電壓的變化方向與場管的d極電壓相反。變壓器次級繞組的兩端是相位相反的噪聲電壓活躍節點。圖3的是采用節點相位平衡法后,變壓器骨架上的線圈分布。  

    變壓器骨架最內層是前級繞組線圈的一半,與功率開關管的d極相連;層的線圈是次級繞組;最外層是前級繞組的另一半,與節點U. 相連。噪聲電流主要通過前后級線圈層的寄生電容耦合,把前、后級線圈方向相反的噪聲活躍節點成對地繞在內外層就能使大部分的噪聲電流抵消,大大降低了最終耦合到次級的噪聲電流的強度。  

    本文討論的電路中還存在前級電路和次級電路的輔助電源,也是由繞在變壓器上的獨立線圈提供能量的。這兩級輔助線圈的存在給噪聲電流的傳播提供了額外的途徑。輔助線圈是控制電路的供電設計的。盡管控制電路本身的功率很小,但的存在卻增大了電路對地的寄生電容,從而分擔了一部分把共模噪聲從活躍節點耦合到地的工作。然而把這些繞組夾在前級線圈和次級線圈的繞組就能增大前后級繞組的距離,從而的層間寄生電容就減小了,噪聲電流就能相應減小。,變壓器繞制的最終方法應如圖4。從內到外的線圈繞組依次是:前級繞組的一半、輔助繞組的一半、后級繞組、輔助繞組的另一半和前級繞組的另一半。  

3 實驗部分  

    變壓器改進繞法對開關電源的傳導EMC性能提高的有效性可以通過實驗得到驗證。  

3.1 實驗方法  

    實驗文獻[43中的電壓法進行。頻段范圍為0.15~30 MHz;頻譜分析儀的檢波方式為準峰值檢波;測量帶寬為9 kHz;頻譜橫軸(頻率)取對數形式;噪聲信號的單位為dB/"Vl5j  

3.2 實驗結果  

    圖5為變壓器設計改進前后實驗樣品的傳導噪聲頻譜對比。  

    圖5中的上下兩條平行折線分別為國際無線電干擾特別委員會(簡稱CISPR)頒布的CISPR22標準中b級要求的準峰值檢波限值和平均值檢波限值;而曲線為開關電源的傳導噪聲頻譜。從實驗結果可以看出:與傳統方法相比,新方法有著更出色的對共模噪聲電流的抑制能力,尤其在中頻1~ 5MHz的頻段。在較低頻段,電源線上的傳導干擾主要是差模電流引起的;而在中高頻段,共模電流起主要作用。而本文提出的方法對共模電流的抑制較強,實驗和理論是相符合的。在10 MHz的頻段,主要由電路中的其他寄生參數決定EMC性能,與變壓器關系不大。  

4 結束語  

    開關電源電路中的噪聲活躍節點是電路中的共模噪聲源。要降低開關電源的傳導干擾水平,上是減小共模電流強度、增大噪聲源的對地阻抗。在傳統的隔離式EMC設計中,隔離層連接到電路中電位穩定的節點上(如:變壓器前級的負極)要比直接連到地線對EMI干擾的抑制更有效。  

    開關電源電路中的噪聲活躍節點通常都是成對存在的,這些成對節點的相位相反,這一特點活躍節點相位平衡繞法對EMI抑制的有效性高于傳統的隔離式設計。添加隔離金屬層,變壓器的體積與成本都能被有效減小或降低。

容-源-電-子-網-為你提供技術支持

本文地址:http://www.jssjbk.com/dz/22/2011317202133.shtml


本文標簽:


.
頂一下
0%
返回首頁
0
0%

------分隔線----------------------------
發表評論
請自覺遵守互聯網相關的政策法規,嚴禁發布色情、暴力、反動的言論。
表情:
名稱: E-mail: 驗證碼: 匿名發表
發布文章,推廣自己產品。
熱門標簽
 
欧美中文在线视频,天天干天天射天天插,久久视频这里只精品3国产,久久电影精品久久99久久
久久久国产精品午夜一区ai换脸 | 欧美军同video69gay| 国产一二精品视频| 国产成人在线观看| 91国偷自产一区二区三区观看 | 高清国产午夜精品久久久久久| 久久成人免费网| 91亚洲精品久久久蜜桃网站 | 国产欧美精品国产国产专区| 亚洲精品美国一| 成人夜色视频网站在线观看| 欧美日韩国产首页在线观看| 国产精品福利影院| 国产黑丝在线一区二区三区| 制服丝袜亚洲精品中文字幕| 亚洲欧洲av色图| 亚洲成av人在线观看| 91影视在线播放| 亚洲精品成人在线| 91蜜桃免费观看视频| 国产精品嫩草影院com| 紧缚奴在线一区二区三区| 欧美videos大乳护士334| 秋霞午夜鲁丝一区二区老狼| 日本韩国欧美一区二区三区| 午夜精品福利视频网站| 精品国产乱码久久久久久老虎 | 国精产品一区一区三区mba桃花 | 国产精品久久久久影院亚瑟| 国产真实乱子伦精品视频| 国产精品久久午夜夜伦鲁鲁| av中文字幕在线不卡| 国产精品卡一卡二卡三| 狠狠色综合播放一区二区| 国产欧美日韩亚州综合| 欧美性色aⅴ视频一区日韩精品| 亚洲二区在线视频| 亚洲国产精品二十页| 欧美日本高清视频在线观看| 成人app软件下载大全免费| 天堂av在线一区| 一区二区高清在线| 久久久99精品久久| 日韩一区二区三区视频在线| 欧美主播一区二区三区| 国产成人高清在线| 粉嫩绯色av一区二区在线观看| 日日摸夜夜添夜夜添亚洲女人| 国产精品精品国产色婷婷| 精品国产a毛片| 国产视频一区二区在线| 日韩一区二区免费视频| 69成人精品免费视频| 在线免费观看不卡av| 99国产精品久| 欧美日韩一区久久| 成人黄色网址在线观看| 亚洲一区二区美女| 亚洲精品美国一| 国产一区二区三区免费看 | 日本欧洲一区二区| 久久精品国产成人一区二区三区 | 97se狠狠狠综合亚洲狠狠| 99久久精品国产观看| 欧美一a一片一级一片| 91精品婷婷国产综合久久性色 | 国产一区二区三区高清播放| 国产精品久久久久久久蜜臀| 精品91自产拍在线观看一区| 中文字幕欧美激情| 久久国产精品72免费观看| 99re视频精品| 久久午夜电影网| 三级影片在线观看欧美日韩一区二区 | 一本久道中文字幕精品亚洲嫩| 欧美电影一区二区三区| 亚洲最色的网站| 成人av网站在线观看免费| 久久久精品黄色| 麻豆免费看一区二区三区| 精品国一区二区三区| 国产精品综合av一区二区国产馆| 日韩一区二区在线播放| 福利电影一区二区三区| 日韩美女视频一区| 884aa四虎影成人精品一区| 久久99精品国产91久久来源| 国产精品伦一区二区三级视频| 不卡电影一区二区三区| 午夜精品影院在线观看| 亚洲欧美一区二区三区极速播放 | 国产一区美女在线| 成人欧美一区二区三区白人| 欧美日本乱大交xxxxx| 国产精品996| 日韩午夜精品电影| 在线精品亚洲一区二区不卡| 看电影不卡的网站| 久久九九99视频| 欧美精品色一区二区三区| 国产丝袜在线精品| 国产成人精品综合在线观看 | 国精产品一区一区三区mba视频| 欧美国产一区二区在线观看| 欧美日本国产视频| 91蜜桃网址入口| 日韩中文字幕一区二区三区| 麻豆91精品91久久久的内涵| 午夜国产精品影院在线观看| 中文字幕色av一区二区三区| 日韩久久久久久| 欧美日韩一级片在线观看| 亚洲尤物在线视频观看| 国产精品理论片| 国产三级精品三级| 91精品国产免费| 在线观看视频91| 精品视频1区2区3区| 国产性天天综合网| 中文字幕日本不卡| 国产露脸91国语对白| 97久久久精品综合88久久| 精品久久久久久最新网址| 色天使久久综合网天天| 日产精品久久久久久久性色| 久久国产精品无码网站| 亚洲女女做受ⅹxx高潮| 国产剧情在线观看一区二区| 日韩精品三区四区| 一区二区三区在线免费| 午夜欧美大尺度福利影院在线看| 自拍偷拍欧美激情| 香蕉影视欧美成人| 视频在线在亚洲| 亚洲免费av观看| 国产在线不卡一卡二卡三卡四卡| 激情五月激情综合网| 久久99精品久久久久久久久久久久| 一区二区激情视频| 亚洲综合丝袜美腿| 高清不卡一二三区| 欧美丰满美乳xxx高潮www| 26uuu亚洲综合色欧美 | 亚洲国产日韩a在线播放性色| 五月开心婷婷久久| 亚洲国产精品久久一线不卡| 蜜臀精品久久久久久蜜臀| 国产一区二区剧情av在线| 91麻豆蜜桃一区二区三区| 精品国产乱码久久久久久蜜臀| 欧美国产国产综合| 日韩精品成人一区二区三区| 伊人色综合久久天天| 日韩成人一级大片| 福利电影一区二区| 精品奇米国产一区二区三区| 亚洲电影在线免费观看| 午夜精品久久久久久久| 欧美午夜一区二区三区免费大片| 欧美日韩一级大片网址| 久久精品国产秦先生| 黄色资源网久久资源365| 日本欧美加勒比视频| 日韩一级二级三级| 国产乱码精品一区二区三 | 不卡免费追剧大全电视剧网站| 26uuu久久天堂性欧美| 久久99这里只有精品| 久久品道一品道久久精品| 欧美国产精品一区| 在线观看亚洲a| 狠狠色丁香久久婷婷综| 欧洲亚洲精品在线| 国产一区二区在线看| 成人欧美一区二区三区| 懂色av中文字幕一区二区三区 | 成人精品视频网站| 蜜桃视频一区二区| 亚洲一级不卡视频| 亚洲欧洲日产国码二区| 国产一区二区美女| 亚洲午夜久久久| 粉嫩一区二区三区性色av| 丝袜国产日韩另类美女| 最新热久久免费视频| 欧美一区二区精美| 欧美日韩中字一区| 欧美日韩视频在线观看一区二区三区| 狠狠色2019综合网| 久久66热re国产| 国产毛片精品国产一区二区三区| 久久免费电影网| 国产亚洲污的网站| 亚洲人成在线播放网站岛国| 国产精品毛片高清在线完整版| 日韩精品视频网站| 久久成人免费日本黄色| 成人av网站免费观看| 日本久久精品电影| 2欧美一区二区三区在线观看视频|